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A validation study of the impulse method applied to the motion of a closed
elastic membrane under tension separating two incompressible, inviscid fluids
in two dimensions is presented. The approach consists of a nonlinear analysis
based on a small-amplitude perturbation of an exact solution. The equations
of motion for the Fourier coefficients of the solution are developed to two
orders beyond the leading-order problem. The nonlinear terms in the equa-
tions depict the coupling of the Fourier modes and account for the temporal
variation of the tension. The last order of the expansion is used to compute
frequency corrections to the driving modes. Solutions for various problems
are found and compared with a numerical method based on impulse variables.
The results show that the numerical periods and amplitudes of the oscillations
approach the values predicted by the perturbation analysis as the numerical
smoothing parameter is reduced. This validates the use of impulse methods
for free-boundary motion with surface forces. Q 1997 Academic Press
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1. INTRODUCTION

Many physical phenomena involve interfaces between two fluids moving under
the influence of forces acting at the immersed boundaries. In this paper we address
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the problem of the interaction of a closed, flexible, elastic membrane with incom-
pressible fluids inside and outside. The forces along the membrane are proportional
to its curvature multiplied by a tension, which depends on the length of the mem-
brane and is therefore time-dependent. The goal of this paper is twofold: (a) to
develop approximate equations whose solution describes the motion of a closed
elastic membrane separating two fluids of different densities; and (b) to use the
results to test the validity of a numerical method based on impulse variables.

In the first part of the paper we present a nonlinear analysis of the problem
based on a small-amplitude perturbation using a circular membrane as the base
solution. A similar technique was used in [21] for the study of bubble oscillations
in three dimensions. The forces in their case include only the case of constant
tension. In our analysis, the region inside the membrane is initially mapped to
the unit disc to simplify the enforcement of boundary conditions. The analytical
techniques used to obtain the small-amplitude dynamics of the interface are the
classical methods of singular perturbation analysis [15, 20]. As in the typical prob-
lems involving periodic forcing, we apply the method of multiple scales or the
Lindstedt–Poincaré method for removing secular behavior from the perturbation
equations, thus rendering a solution valid uniformly in time. The expansions are
carried out to the third order in « (the perturbation amplitude) so that corrections
to the leading-order frequencies can be calculated from the multiple scale analysis.
This provides the nonlinear relation between the oscillation period and the ampli-
tude of the motion. The solutions to the perturbation equations provide approximate
solutions to the original problem independent of any numerical method and, there-
fore, can be used to test the validity of specific methods. The solutions for two
different cases of the tension are presented in Section 3.

Numerical methods developed to model this type of problem include the Lagran-
gian method based on impulse variables described in [9]. In this method, particles
carrying impulse density are distributed along the membrane. For inviscid flows,
the impulse defined at the interface is sufficient to describe the entire motion and
thus the discretization of the impulse is only necessary on a one-dimensional set.
Impulse is a very natural variable to transmit the effect of the boundary forces to
the fluid. An important feature of the impulse method is that it can be used to
model viscous flows in a straightforward manner and may have an advantage over
other particle methods (especially in three dimensions) due to the divergence-free
character of the induced vorticity field (see [7] for details). To our knowledge the
present paper is the first analysis of the impulse method solutions in the context
of immersed boundaries. The impulse method is described in Section 4 and the
numerical results are presented in Section 5.

The corrected oscillation frequencies resulting from the perturbation analysis
provide a good basis for comparison with the results of the numerical method
for moderate perturbation amplitudes. Figure 1 shows an example comparing the
dynamics of a membrane over two periods of oscillation. The solid curve is the
result of the asymptotic analysis and the dashed curve was obtained using the
impulse method. The initial condition was a circle plus a third-mode perturbation
of amplitude 0.1. This comparison illustrates clearly the effects of smoothing parame-
ters of the numerical method on the period of the motion. Our results show that
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FIG. 1. Comparison of membrane motion given by the impulse method (dashed) and the asymptotic
solution (solid) over two periods. Initial conditions are given by r(u) 5 ro 1 0.1 cos(3u). The figure
shows a lag in the numerical solution due to the smoothing parameter.

the impulse method yields solutions which are in good agreement with solutions
of the perturbation equations. The numerical periods are slightly longer than the
analytical ones, due to the smoothing parameter in the method. As this parameter
is reduced, the computed periods and amplitudes of the oscillations approach the
asymptotic ones.

Different versions of the problem presented in this paper are used as models for
various physical phenomena. Models of the flow of blood in the heart chambers
have been developed by Peskin and his collaborators (see, e.g., [14, 17, 18]) in two
and three dimensions. The models treat the walls of the heart as elastic membranes
interacting with a fluid. Similar models have also been adapted to study the locomo-
tion of aquatic animals and microorganisms [10, 11]. The motion of bubbles has been
studied asymptotically in [21] and numerically in [6] for the case of constant tension.

2. THE EQUATIONS OF MOTION

The general problem we consider consists of two incompressible, inviscid fluids
in the plane separated by a closed membrane under tension (see Fig. 2). The fluids
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FIG. 2. Diagram of an elastic membrane separating two fluids.

inside and outside the membrane have constant but possibly different densities ri

and ro . The fluid interface is the membrane, which is assumed to be massless,
infinitely thin and moving with the fluid velocity. The tension is assumed to be a
function of the membrane length and, therefore, time-dependent.

Let Vi and Vo represent respectively the regions inside and outside the membrane.
Since the flow is irrotational in both Vi and Vo , the flow in these regions is described
by two velocity potentials which satisfy

Df 5 0 in Vi

Dc 5 0 in Vo .

Define a function (in polar coordinates) f(r, u) 5 r 2 R(u, t), whose zero level set
is the interface ­V. The function R(u, t) is assumed to be single-valued in u. There
are three conditions that must be satisfied on the interface ­V:

1. The membrane must define the interface between the two fluids at all times
and should always consist of the same material particles. Thus we require continuity
of the normal velocity,

­f

­n
5

­c

­n
⇒ n̂ · (=f 2 =c) 5 0,

where the unit normal vector n̂ is the normalized gradient of f.

2. The membrane must move with the fluid velocity

­f
­t

1 u · =f 5 0.

3. The pressure jump at the interface must balance the elastic forces. The force
density is assumed to be of the form
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s(L(t) 2 2fR0)k,

where s is a positive stiffness constant, L(t) is the length of the membrane, 2fR0

is the length of the unstretched membrane, and k is the curvature. The stiffness s

can be treated as a time-dependent function without any complications; however,
here we restrict our attention to constant stiffness.

For simplicity and without loss of generality we assume that the area enclosed
by the membrane equals f so that an exact solution of the problem is a circular
membrane of unit radius. We also introduce the transformation x 5 r/R which
maps the inner region Vi to the unit disc. After the transformation the potential
f(x, u, t) must satisfy the equation for 0 # x , 1,

F1 1 SRu

RD2G fxx 1
1
x F1 2 SRu

RDu
1 SRu

RD2G fx 1
1
x2 fuu 2

2
x SRu

RD f xu 5 0, (1)

where subscripts represent derivatives. c(x, u, t) satisfies the same equation as f

but for x . 1. The three conditions at the interface x 5 1 become:

1. The kinematic condition is

[R2 1 (Ru)2](f 2 c)x 5 RRu(f 2 c)u (2)

2. The velocity of the fluid at the interface can be taken as the average of the
velocities found from either side of the membrane; thus, u 5 (=f 1 =c)/2 and the
second condition becomes

2R3Rt 1 RRu(f 1 c)u 5 [R2 1 (Ru)2](f 1 c)x . (3)

3. From Bernoulli’s equation in each fluid, we find that the pressure inside and
outside satisfies

p0(x, t) 5 2ri[ft 1 Asu=fu2] 1 P0(t)

p1(x, t) 5 2ro[ct 1 Asu=cu2] 1 P1(t).

We take the limit as x approaches 1 from both sides of the membrane and equate
the pressure jump with the forces,

ro[ct 1 Asu=cu2] 2 ri[ft 1 Asu=fu2] 1 Ps(t) 5 s(L(t) 2 2fR0)k.

The quantity Ps(t) 5 P0(t) 2 P1(t) accounts for all terms on the right-hand side of
the last equation which depend solely on time. With this convention, when the
right-hand side does not depend on position, the velocity potentials are identically
zero.
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We can nondimensionalize the problem and simplify the notation by making the
following changes of variables:

r 5 ro/ri , t9 5 t(s/ri)1/2, f9 5 f(ri/s)1/2, c9 5 c(ri/s)1/2, P9s(t) 5 Ps(t)/s.

The dynamic condition in terms of x is (after dropping the primes),

1
R4 FR4(rc 2 f)t 2 R3Rt(rc 2 f)x 1

1
2

R2(r(cu)2 2 (fu)2) 2 RRu(rcucx 2 fufx)

1
1
2

[R2 1 (Ru)2][r(cx)2 2 (fx)2]G5 k[L(t) 2 2fR0] 2 Ps(t). (4)

2.1. Expansions

The right-hand side of the last equation requires the expansion of the curvature
and the membrane length. These are given respectively by

k 5
R2 1 2(Ru)2 2 RRuu

[R2 1 (Ru)2]3/2

L(t) 5 E2f

0
(R2 1 (Ru)2)1/2 du.

We assume the membrane is a small perturbation of the unit circle, so we make
the identification R(u, t) 5 1 1 «F(u, t). The incompressibility of the fluids imposes
a constraint on F; namely, the conservation of area inside the membrane,

f 5
1
2
E2f

0
(1 1 «F)2 du,

from which we deduce that

E2f

0
«F du 5 2

«2

2
E2f

0
F 2 du. (5)

This equation is used in the expansion of the membrane length.
The full expansion of the equations is accomplished by writing R 5 1 1 «F(1) 1

«2F(2) 1 «3F(3), f 5 «(f(1) 1 «f(2) 1 «2f(3)), c 5 «(c(1) 1 «c(2) 1 «2c(3)), and
Ps(t) 5 P(0)(t) 1 «P(1)(t) 1 «2P(2)(t) 1 «3P(3)(t) 1 ? ? ? . This leads to Poisson problems
with Neumann boundary conditions for f and c plus a matching condition that
yields an equation for F(u, t) at each order of «. Further details of the problem
definition at each order of « are found in the Appendix.

In order to reveal the structure of the right-hand side of Eq. (4), the length of
the membrane can be expanded as L(t) 2 2fR0 5 2fb 1 «2J2 1 «3J3 1 «4J4 1 ? ? ? ,
where
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TABLE I
Right-Hand Side of Eq. (6), Assuming b0 5 O(1)

b ; 1 2 R0 m Leading orders of the right-hand side of Eq. (6)

b0 0 [P(1) 2 2fb0K1] 1 «[fb0K2 1 J2 2 P(1)]
b0« As [J2 2 P(2) 2 2fb0K1] 1 «[fb0K2 2 K1J2 1 J3 2 P(3)]
b0«

2 1 [J3 2 P(3) 2 (2fb0 1 J2)K1] 1 «[fb0K2 1 AsK2J2 2 K1J3 1 J4 2 P(4)]
b0«

3 1 [J3 2 P(3) 2 J2K1] 1 «[22fb0K1 1 AsK2J2 2 K1J3 1 J4 2 P(4)]
#b0«

4 1 [J3 2 P(3) 2 J2K1] 1 «[AsK2J2 2 K1J3 1 J4 2 P(4)]

Note. For each case, the time must be scaled by a factor of «m.

b 5 1 2 R0 # 1

J2 5
1
2
E2f

0
[(F(1)

u )2 2 (F(1))2] du,

J3 5
1
2
E2f

0
[2(F(1)

u )(F(2)
u ) 2 2F(1)F(2) 2 F(1)(F(1)

u )2] du,

J4 5
1
8
E2f

0
[4(F(1))2(F(1)

u )2 1 4(F(2)
u )2 1 8F(1)

u F(3)
u 2 4(F(2))2

2 4(F(1)
u )2F(2) 2 8F(1)F(3) 2 8F(1)F(1)

u F(2)
u 2 4(F(1)

u )4] du,

and the curvature is k 5 1 2 «K1 1 («2/2)K2 1 («3/2)K3 1 ? ? ? , where

K1 5 F(1) 1 F(1)
uu ,

K2 5 (F(1)
u )2 1 2(F(1))2 1 4F(1)F(1)

u 2 2F(2) 2 2(F(2)
uu ),

K3 5 4F(1)F(2) 1 4F(1)F(2)
uu 1 4F(1)

uu F(2) 1 2F(1)
u F(2)

u 2 2(F(1))3

2 3F(1)(F(1)
u )2 2 6(F(1))2F(1)

uu 1 3(F(1)
u )2F(1)

uu 2 2F(3) 2 2F(3)
uu .

The right-hand side of Eq. (4) is given by

k(L(t) 2 2fR0) 2 Ps(t) 5 [2fb 2 P(0)] 2 «[2fbK1 2 P(1)]

1 «2[fbK2 1 J2 2 P(2)] 1 «3[fbK3 2 K1J2 1 J3 2 P(3)]

1
«4

2
[4fbK4 1 K2 J2 2 2K1J3 1 2J4 2 2P(4)]

1
«5

2
[4fbK5 1 K3 J2 1 K2 J3 2 2K1J4 1 2J5 2 2P(5)] 1 ? ? ? .

(6)

We infer from Eqs. (1)–(3) and Eq. (6) that the additional scaling t9 5 «mt, f 5

«mf9, and c 5 «mc9 for some m $ 1 may be necessary whenever b is much smaller
than O(1) (i.e., a power of «). The correct value of m is found from Eq. (4) and
depends on the leading order of the right-hand side shown in Eq. (6). Table I shows
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various cases. The pressure terms P(i)(t) are the ones that cancel functions of time
at each order of the expansion and need not be computed explicitly. Note that the
terms that come from the tension (i.e., J2 , J3 , and J4) are functions of time only.
The dependence of the forces on position is in the curvature terms.

When b 5 O(1) (i.e., m 5 0 in Table I), the base solution of the problem is a
circular membrane under tension. The dominant terms on the right-hand side of the
equation are the ones arising from the curvature; terms that account for variations in
tension do not appear in the first two orders of the right-hand side of Eq. (6). This
indicates that to O(«2) the problem is indistinguishable from one with constant
tension. The opposite extreme is the case b 5 0, which corresponds to a membrane
whose resting length equals the circumference of the unit circle. In this case the
unperturbed solution is a circular membrane whose circumference is exactly equal
to its resting length and is not under tension. For small values of b, the motion is
expected to occur on a longer time scale since there is little initial energy in the
membrane. The time variation of the tension is embedded in the quantities J0 , J1 ,
and J2 .

3. SOLUTIONS TO TWO PROBLEMS

In this section we present the solution to the approximate equations for two
different orders of magnitude of b. More details are found in the Appendix. The
first example illustrates the case b 5 O(1) and the second illustrates the case b 5

O(«2). In both cases the initial condition is given by a perturbation of the kth mode
so that the initial shape of the membrane is given by

(1 2 «2/2)1/2 1 « cos(ku)

and the motion is started from rest. We recall that the approximate solution is
given by

R(u, t) 5 1 1 «F(1)(u, t) 1 «2F(2)(u, t).

The solution F(3)(u, t) to the O(«3) problem will be computed only to the extent
required to provide a frequency correction to F(1)(u, t) or F(2)(u, t).

3.1. Problem 1

We consider a single-mode perturbation of a membrane with very small resting
length, corresponding to the case b 5 O(1) (we must have b # 1). This case is
common in practical applications in physiology. The current implementation of the
impulse method is for two fluids of equal density, so we set both densities equal
to one (ri 5 ro 5 1). Future work includes modifying the code to account for
different densities.

The O(«) solution (see the Appendix) is given by F(1)(u, t) 5 A(t) cos(ku), where
A(t) is the solution to
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Ä(t) 1 g2A(t) 5 0, A(0) 5 1, Ȧ(0) 5 0,

so that A(t) 5 cos(gt) and g gives the linear dispersion relation

g2 5 fbk(k2 2 1). (7)

The solution to the O(«2) problem is F(2)(u, t) 5 2AfA2(t) 1 B(t) cos(2ku). The
first term in F(2) represents a correction to the unit radius in the solution
R(u, t) which results from enforcing the incompressibility condition Eq. (5). In the
second term, B(t) satisfies the following equation with homogeneous initial condi-
tions

B̈(t) 1
2(4k2 2 1)

(k2 2 1)
g2B(t) 5 2

1
2

g2 1
(7k2 2 4)
2(k2 2 1)

g2A2(t),

so that

B(t) 5
5k2 2 2

8(4k2 2 1)
1

(7k2 2 4)
8(2k2 1 1)

cos(2gt) 2
19k4 2 11k2 1 1

4(4k2 2 1)(2k2 1 1)
cos(s t), (8)

where s is the natural frequency of B(t) and is related to g by

s 2 5
2(4k2 2 1)

(k2 2 1)
g2.

The O(«3) solution is F(3)(u, t) 5 U(t) cos(ku) 1 W(t) cos(3ku), where U(t)
satisfies the equation

Ü(t) 1 g2U(t) 5 2
g2

4
(k2 2 7)A(t) 1 F(7k4 2 55k2 1 36)

8(k2 2 1)
g2 2

f
4

k(k2 2 1)2GA3(t)

1
(17k2 2 5)
2(k2 2 1)

g2A(t)B(t) 2 Ȧ(t)Ḃ(t).

Since A(t) is a solution of the homogeneous version of this equation, the presence
of a term of the form C1A(t) on the right-hand side will force the solution U(t) to
have a secular term. One way to remove the secularity is to use the Lindstedt–
Poincaré method [15] and to introduce a new time t at the beginning of the deriva-
tion, such that t 5 t(1 1 «2g1). The effect of the new time scale is to augment the
equation for U(t) by the term [22g2g1A(t)] on the right-hand side. The appropriate
choice for g1 is the one that cancels the term containing A(t). This value of g1

provides a correction to the frequency of A(t) so that A(t) 5 cos((1 2 «2g1)gt).
For this problem we obtain

g1 5
(k2 2 1)(52k4 1 65k2 2 18)

32(4k2 2 1)(2k2 1 1)
2

3(k2 2 1)
32b

.
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We recall that in this problem we assumed b 5 O(1). However, since the correction
was derived for u«2g1u ! 1, the result is valid for O(«2) , b # 1.

3.2. Problem 2

We consider a single-mode perturbation of a membrane and set b 5 b0«
2. This

means that the difference between the circumference of the base solution and the
resting length of the membrane is only 2fb0«

2. The motion is, therefore, expected
to be slower than in the previous problem and time must be rescaled by a factor
of « as indicated in Table I.

The O(«) solution is given by F(1)(u, t) 5 A(t) cos(ku), where A(t) is the solution to

Ä(t) 1 g2A(t) 1 c 2A3(t) 5 0, A(0) 5 1, Ȧ(0) 5 0,

so that A(t) 5 cn(ht; p2) (Jacobian elliptic cosine with modulus p; see [5]), where
h2 5 g2 1 c 2 and

g2 5 fb0k(k2 2 1), c 2 5
f
4

k(k2 2 1)2, p2 5
c 2

2h2 . (9)

The solution to the O(«2) problem is F(2)(u, t) 5 2AfA2(t) 1 B(t) cos(2ku). The
first term again comes from the incompressibility condition and B(t) satisfies the
equation with homogeneous initial conditions

B̈(t) 1
2(4k2 2 1)

(k2 2 1)
[g2 1 c2A2(t)]B(t)

5 2
1
4

(2g2 1 c2) 1
A2(t)

4(k2 2 1)
[2g2(7k2 2 4) 1 c2(13k2 2 7)A2(t)]. (10)

The homogeneous equation for B(t) is of Lamé type (see [13, 2]) and its solutions
are generally represented as infinite series in powers of A2(t).

The O(«3) solution is again F(3)(u, t) 5 U(t) cos(ku) 1 W(t) cos(3ku), where U(t)
satisfies the equation of the form

Ü(t) 1 [g2 1 3c2A2(t)]U(t) 5 H2(A(t), B(t)).

We found that the secular term in the solution of this equation is of the form
[C1t 1 C2E(t, p)]Ȧ(t), where E(t, p) is the incomplete elliptic integral of the second
kind, which grows roughly linearly in time. The same technique used in the previous
problem can be used to remove the secularity. In this case, however, an expression
for the frequency correction to A(t) is not generally available. Thus g1 must be
computed numerically.

3.3. The Period of A(t)

From the results of the previous two sections one can infer that the general
equation for the amplitude A(t) is
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FIG. 3. T(b, «) vs « for k 5 3 and three values of b.

Ä(t) 1 bg2
oA(t) 1 «2c2A3(t) 5 0, A(0) 5 1, Ȧ(0) 5 0,

where

g2
o 5 fk(k2 2 1), c2 5

f
4

k(k2 2 1)2.

This equation is valid for any b such that O(«2) # b # O(1). By retaining all three
terms, one finds that the (uncorrected) period of A(t) is given by

T(b, «) 5
4K(p2)

Ïbg2
o 1 «2c2

with p2 5
«2c2

2(bg2
o 1 «2c2)

, (11)

where K(p2) is the complete elliptic integral of the first kind of modulus p. In the
case of b 5 O(1) and « 5 0, this reduces to the period given by the linear dispersion
relation T 5 2f/g. In Fig. 3 the intersections of the curves with the vertical axis
represent the values of the periods predicted by the linear theory. However, for a
fixed b ! 1 the finite amplitude effects are no longer negligible and a linear analysis
would be appropriate only for extremely small values of the perturbation parameter
«, which would not produce appreciable motion. The nonlinear analysis in this
paper was developed in order to compute the motion of the membrane for more
reasonable perturbation amplitudes (e.g., « P 0.1) and for a wide range of values
of b.

4. THE IMPULSE METHOD

The numerical method we consider is the one in [9] so we present only a brief
description here. Consider the incompressible Euler equations in R2 for a single
fluid (assuming uniform unit density),
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ut 1 u · =u 5 2=p 1 F, = · u 5 0, (12)

where u is the fluid velocity, = · u 5 0 is the incompressibility condition, p is the
pressure, and F represents external force. We define m initially as a vector field
equivalent to u up to an arbitrary gradient,

m 5 u 1 =x, (13)

so that u is the divergence-free part of the Hodge decomposition (see, e.g., [8]) of
m in R2. The fluid velocity u is uniquely determined from m by finding the free-
space projection of m onto the field of divergence-free vectors, denoted by u 5

Pm. The impulse field can be restricted to the membrane since it is there where
the forces are nonzero. This impulse field is equivalent to a dipole distribution
along the membrane (see [4]). The evolution equation for m, dervied from the
Euler equations and Eq. (13) (for details see [4, 9]), is

mt 1 u · =m 5 2(=u)Tm 1 F, (14)

where =u is a matrix with entries (=u)i j 5 ­ui/­xj and T denotes the transpose.
A Lagrangian numerical method based on Eq. (14) is obtained by (a) approximat-

ing the impulse field by some discretization, (b) finding u from m via a projection,
(c) advancing the particles and updating the impulse. The approximation of m(x)
is given by a collection of impulse blobs m̃(x) 5 o hjmjfd(x 2 xj) centered at
locations xj. The impulse strengths mj are initially set equal to the m(xj) and hj

represents the jth element of arclength. The cutoff function fd is chosen to satisfy
certain conditions for the purpose of accuracy (see, e.g., [1, 3, 12, 7, 19]). In particular,
an ,th-order cutoff function is defined as fd(x) 5 d22f1(x/d), where the cutoff radius
d is a small parameter and f1 is a smooth function satisfying:

1. e f1(x) dx 5 1,

2. e xaf1(x) dx 5 0, 0 , uau , , 2 1,

3. e uxu,u f1(x)u dx , y.

Here a is a two-dimensional multiindex and , is a fixed positive integer. In
this paper we use the fourth-order radially symmetric function f1(r) 5

(1/2f)(4e2r2
2 e2r2/2).

4.1. The Particle Velocities due to Impulse

The projection required to find the velocity u in terms of m can be done exactly
for a radially symmetric function fd . The final result is

u(x) 5 ON
j51

hjmj FrF9(r) 2 F(r)
2fr2 G2 hjx̂j(mj · x̂j) FrF9(r) 2 2F(r)

2fr2 G, (15)

where N is the total number of elements, x̂j 5 (x 2 xj)/r, r 5 ux 2 xju, and F(r) 5



236 CORTEZ AND VARELA

euxu#r fd(uxu) dx is the shape factor, which depends only on the cutoff function. The
particle positions are advanced using dxj/dt 5 u(xj).

4.2. The Update of Impulse Strengths

The impulse strengths must be updated with an equation approximating Eq. (14).
This is done by differentiating the expression for u to obtain the matrix =u, and
calculating the forces at the locations xj. The impulse strengths are updated with
the equation dmj/dt 5 2(=u)Tmj 1 fj , where fj is the force on the piece of boundary
represented by the jth particle (see below). For simplicity, the forces are computed
at the beginning of the time step. The algorithm is:

1. For a time step Dt, compute the forces fj and update the impulse strengths

mj r mj 1 Dt fj.

2. Given m̃(x) 5 oj hjmjfd(x 2 xj), find expressions for u(x) 5 Pm̃ and =u.

3. Update the particle positions and impulse strengths:

dxj

dt
5 u(xj)

dmj

dt
5 2(=u)Tmj.

4.3. The Computation of the Forces

Let f be the force density along the elastic membrane. Then the forces exerted
by the membrane on the fluid are given by the singular line integral [14]

F(x) 5 R f(s)d(x 2 x(s)) ds, (16)

where x(s) is the arclength parametrization of the boundary and d is the two-
dimensional Dirac delta function. Given the tension G(t), curvature k, and outward
unit vector normal to the boundary n̂, the force density for Euler flow has the form
f(s) 5 G(t)kn̂. Any tangential forces make the membrane slip and do not affect the
fluid motion; consequently the tension is a function of time only (see also [17]).

In practice, the forces are found at points on the boundary where impulse vectors
are located. Each force vector is associated with a piece of arclength corresponding
to the discretization of the boundary. The force at xj is fj 5 G(t)k(xj)hj(t), where
hj(t) is the discretization size of the jth particle. Each piece of arclength (the
discretization size) has a stiffness constant s and a resting length h0 (equal for all
elements). The tension is defined by the equation

G(t) 5 s ON
j51

(hj(t) 2 h0). (17)
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5. NUMERICAL RESULTS

Consider the case b 5 1. From Section 3.1, the solution to the approximate
equations is

r(u, t) 5 F1 2
«2

4
A2(t)G1 «A(t) cos(ku) 1 «2B(t) cos(2ku),

where for k 5 2, A(t) and B(t) are

A(t) 5 cos SÏ6f S1 2
223
480

«2D tD (18)

B(t) 5
3
20

1
1
3

cos(2Ï6f t) 2
29
60

cos(Ï60f t), (19)

and for k 5 3 they are

A(t) 5 cos SÏ24f S1 2
696
665

«2D tD (20)

B(t) 5
43
280

1
59

152
cos(2Ï24f t) 2

1441
2660

cos(Ï210f t). (21)

The following expressions for the membrane stretching length (L), potential energy
(PE), and kinetic energy (KE) are also found to O(«4):

L 2 2fR0 5
f
2

[4b 1 (k2 2 1)«2A2(t)] (22)

PE 5 f 2b[2b 1 (k2 2 1)«2A2(t)] (23)

KE 5 f 2b«2(k2 2 1)[1 2 A2(t)]. (24)

We set « 5 0.1. The problem was then solved with the impulse method using
600 particles with an initial spacing of h 5 0.0106 for k 5 2 and h 5 0.0107 for
k 5 3. The smoothing effect of the cutoff radius on the period of the oscillations is
to increase the period. This has been demonstrated numerically in [9] for the case
of an interface of elliptical shape. The numerical solution was obtained for several
values of the cutoff radius d. Figures 4 and 5 show the amplitudes of the Fourier
modes for k 5 2 and k 5 3, respectively, as compared with the asymptotic solution.
The figures show that as d decreases, the amplitudes and the frequencies approach
the analytical ones. This is true for both the driving mode A(t) and the driven mode
B(t), although the latter seems to be more sensitive to smoothing effects. We should
note that the frequency of B(t) has not been corrected since its correction comes
at one order higher than the order of the expansion presented here. The effect of
the cutoff parameter is also more pronounced for the larger perturbation frequency.
This is also apparent in Fig. 6, where for « 5 0.1, the larger perturbation frequency
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FIG. 4. Solution for « 5 0.1, b 5 1, k 5 2 and d 5 0.12 (dotted), d 5 0.08 (dash-dot), and d 5 0.04
(dashed). The solid line is the expansion solution given by Eqs. (18)–(19).

(k 5 3) yields slightly larger periods relative to k 5 2. In this figure, the periods
corresponding to d 5 0 have been estimated using cubic splines. From Fig. 6 we
observe that for a given perturbation frequency, the results are very similar for
different values of «. This is the case because the periods in the figure have been
normalized by the factor 2f/gk , where gk is the corrected frequency of A(t). The
area inside the membrane and the total energy in all runs were conserved to within
0.1% for k 5 2 and within 0.2% for k 5 3. The potential energy for both cases is
shown in Fig. 7.

5.1. Numerical Example with b 5 O(«2)

We present examples of a k-mode perturbation of a membrane for the case
b 5 b0«

2. This corresponds to a membrane with resting length nearly equal to the
circumference of the base solution. Consequently there is little energy in the system
and the motion occurs on a slow time scale. Also, the nonlinear effects of the
temporal variations in the tension are present even at the leading order terms of
the solution. According to Table I, time must be scaled by a factor of «. Again we
set the densities equal to 1 and solve the perturbation equations as described in
Section 3.2. The solution is

r(u, t) 5 F1 2
«2

4
A2(«t)G1 «A(«t) cos(ku) 1 «2B(«t) cos(2ku),
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FIG. 5. Solution for « 5 0.1, b 5 1, k 5 3 and d 5 0.12 (dotted), d 5 0.08 (dash-dot), and d 5 0.04
(dashed). The solid line is the expansion solution given by Eqs. (20)–(21).

FIG. 6. Normalized period Tgk/2f for two different perturbation frequencies, b 5 1, k 5 2, 3, and
« 5 0.1, 0.04. The period T was found with the impulse method and the normalizing factors 2f/gk use
the corrected frequency of A(t) for each case.



240 CORTEZ AND VARELA

FIG. 7. Potential energy for b 5 1, k 5 2 (top), and k 5 3 (bottom). The solid line is the expansion
solution given by Eq. (23); d 5 0.12 (dotted), d 5 0.08 (dash-dot), and d 5 0.04 (dashed); « 5 0.1.

where for k 5 2, A(t) is

A(t) 5 cn(Ï21f/2(1 2 0.89668«2)t; 3/14) (25)

and B(t) satisfies Eq. (10) with homogeneous initial conditions. B(t) was found
numerically as was the correction to the frequency of A(t). The value b0 5 1 will
be used throughout this section.

The approximations for the membrane length, potential energy and kinetic en-
ergy are

L 2 2fR0 5
f«2

2
[4b0 1 (k2 2 1)A2(t)] 1 O(«4) (26)

PE 5
f 2«4

8
[4b0 1 (k2 2 1)A2(t)]2 1 O(«6) (27)

KE 5
f 2«4

8
(k2 2 1)(1 2 A2(t))[8b0 1 (k2 2 1)(1 1 A2(t))] 1 O(«6). (28)

This problem was solved with the impulse method using 600 particles with initial
spacing h 5 0.0106, k 5 2, and « 5 0.1. A comparison of the results is shown in
Fig. 8. The general characteristics of the results are similar to those of the linear
problem. The numerical amplitudes and frequencies approach the ones predicted
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FIG. 8. Solution for k 5 2 and d 5 0.12 (dotted), d 5 0.08 (dash-dot), and d 5 0.04 (dashed), b 5

«2 with « 5 0.1. The solid line is the expansion solution given by Eq. (25) and Eq. (10).

by the perturbation analysis as d decreases. Figure 9 shows the potential energy.
In this case, the potential energy given in Eq. (27) has relative errors of size O(«2)
(multiplied by an undetermined constant) which provides only a qualitative basis
for comparison. The figure shows the lag in the period and variations of the ampli-
tudes of the numerical solution due to smoothing. The results for initial perturbation
of higher modes are similar to those in the linear case. We call attention to the
difference in the time scale of this problem and the previous one.

FIG. 9. Potential energy for k 5 2 for the case b 5 «2. The solid line is the expansion solution given
by Eq. (27); d 5 0.08 (dash-dot) and d 5 0.04 (dashed); « 5 0.1.
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TABLE II
Numerical Periods Computed for « 5 0.1 Using Four Cutoff

Functions of Different Orders

Using d 5 0.08 Using variable d

Period with f2 1.524 1.500 (d 5 0.0566)
Period with f4 1.484 1.484 (d 5 0.0800)
Period with f6 1.475 1.481 (d 5 0.0980)
Period with f8 1.471 1.480 (d 5 0.1131)
Asymptotic period 1.454 1.454

Note. Here, fk is a kth-order cutoff function as defined in Section 4. The
values of d on the third column were chosen so that all functions have the same
value at the origin.

5.2. Effect of Cutoff Functions

In this section, we present results related to the impact of the order of the cutoff
function on the solution of the problems presented earlier. The authors are not
aware of any numerical studies of the choice of cutoff functions in the context of
impulse methods. As discussed in Section 4, the order of a blob function fd is defined
by the number of moment conditions it satisfies. Standard convergence proofs of
vortex methods make use of this property to reduce the regularization error in the
method (see, e.g., [1, 12, 19]). One family of cutoff functions has the form f2n(r) 5

Pn21(r 2)e2r2
, where Pn(x) is a polynomial of degree n. The function d22f2n(r/d) is a

cutoff of order 2n [3]. The problem of Section 5 with k 5 2, b 5 1, and « 5 0.1
was solved again using cutoff functions of order 2, 4, 6, and 8 from this family. The
impact on the period of the oscillations is displayed in Table II. The middle column
shows the periods obtained with d 5 0.08. One can see that significant improvement
is made with the function of order 4. However, the improvement diminishes by
increasing further the order of the cutoffs. Finally, the gain in using an eighth-order
function over a sixth-order one is minimal. These trends are even more apparent
when the cutoff parameter d is adjusted for each function so that all of them have
the same value at the origin. This normalization was suggested by Nordmark [16]
in the context of vortex methods. One may argue that the high-order blobs of
order up to about six reduce the regularization error significantly. The remaining
discrepancy in the period is due to other sources of error in the numerical method,
such as discretization errors, which increase as d decreases (for a fixed initial parti-
cle separation).

Since the velocity field induced by an impulse vector is that of a vortex dipole
with a prescribed dipole moment, the flow due to impulse can be approximated by
the velocity induced by two counterrotating vortex blobs located near the base of
the impulse vector [9]. Here, the vortex blobs use the same cutoff function as the
impulse vector. Hence, one may expect the choice of cutoff function to play a
similar role in impulse methods as it does in vortex methods. However, it is evident
from Eq. (15) and Section 4 that the singularity in the impulse kernel is higher
than the singularity in the vortex kernel (Biot–Savart law). Also, while the vorticity
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is simply transported in two-dimensional flows, the impulse has an equation of
motion which requires the computation of velocity gradients. These differences
between the impulse and the vortex formulations have not had a significant effect
on the size of the cutoff parameter d (relative to the initial particle spacing) used
in the computations.

6. CONCLUSIONS

We have developed a nonlinear analysis for the problem of the elastic boundary
immersed in a 2D fluid. The forces along the membrane are given by the product
of the curvature and a time-dependent tension, which is a function of the length
of the membrane. The expansions were carried to three orders of the perturbation
amplitude so that corrections to the O(1) frequencies could be computed and
moderately large perturbations could be studied. The dynamics of the membrane
are described by the magnitude of the parameter b, which is linearly related to the
resting length of the membrane. When the resting length is very small (b P 1), to
leading order the system behaves as if the tension were constant with a response
frequency given by the linear dispersion relation Eq. (7). Since the tension is a
function of the stretched length of the membrane, variations of the length introduce
nonlinearities to the perturbation equations. These are particularly important when
the resting length of the membrane is nearly equal to the circumference of the
steady solution. In this case (b ! 1) a nonlinear dispersion relation, which includes
amplitude effects, describes the dynamics of the leading mode (see Eq. (11)).

The impulse method is well-suited for this type of problem. The effect of the
forces at the membrane are simply introduced as impulse density per unit of time.
This numerical method as presented here requires a smoothing parameter that is
typical in a Lagrangian blob method. Our results show the effect of the smoothing
parameter d on the amplitudes and the frequencies of the modes. In general, the
numerical frequencies are smaller since the cutoff radius truncates large velocity
gradients. This lag in the period of the motion is more pronounced for larger
perturbation frequencies. The effect of the smoothing on the amplitudes is more
elusive; however, the results indicate that both amplitudes and frequencies tend to
the corresponding asymptotic values as the cutoff radius is decreased.

We mention, finally, two generalizations to the work presented here. One is the
inclusion of viscosity into the fluid model. The viscous term in the impulse equations
can be treated in a deterministic or random manner as in other particle methods.
Spectral methods, for instance, are not easily adaptable to viscous flows. The second
extension is to make the stiffness of the membrane a function of time. This can be
included easily in the perturbation analysis. Time-dependent stiffness allows the
study of problems of beating membranes and swimming motions of organisms
enclosed in such membranes.

APPENDIX: THE PERTURBATION EQUATIONS

We consider a single-mode perturbation of a membrane. Let k be the mode of
the perturbation so that the initial shape of the membrane is given by
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r(u, 0) 5 (1 2 «2/2)1/2 1 « cos(ku)

and let the motion start from rest.

A.1. The Separation of Orders

We present details of the set of equations to be solved at each order of the
expansion. The right-hand side of the dynamic condition at the interface, Eq. (6),
will be denoted «RHS(1) 1 «2RHS(2) 1 «3RHS(3). We recall that r 5 ro/ri .

At O(«), the equations for x [ [0, 1) and u [ [0, 2f] are

Df(1)(x, u, t) 5 0,

c(1)(x, u, t) 5 2f(1)(1/x, u, t)

with conditions at x 5 1:

f(1)
x 5 F(1)

t

(r 1 1)f(1)
t 5 2RHS(1).

The O(«2) equations for u [ [0, 2f] are

Df(2)(x, u, t) 5
1
x

[F(1)
uu f(1)

x 1 2F(1)
u f(1)

xu ], x [ [0, 1),

Dc(2)(x, u, t) 5 Df(2)(1/x, u, t), x [ (1, y]

with conditions at x 5 1:

f(2)
x 2 c(2)

x 5 2F(1)
u (f(1)

u 2 c(1)
u )

f(2)
x 5 F(2)

t 1 F(1)F(1)
t 1 F(1)

u f(1)
u

rc(2)
t 2 f(2)

t 2 As(r 2 1)[(F(1)
t )2 2 (f(1)

u )2] 5 RHS(2).

The O(«3) equations for u [ [0, 2f] are

Df(3)(x, u, t) 5
1
x

[f(1)
x (F(2)

uu 2 F(1)F(1)
uu 2 2(F(1)

u )2) 1 2f(1)
xu (F(2)

u 2 F(1)F(1)
u )

1 F(1)
uu f(2)

x 1 2F(1)
u f(2)

xu 2 x(F(1)
u )2f(1)

xx ], x [ [0, 1),

Dc(3)(x, u, t) 5
1
x

[c(1)
x (F(2)

uu 2 F(1)F(1)
uu 2 2(F(1)

u )2) 1 2c(1)
xu (F(2)

u 2 F(1)F(1)
u )

1 F(1)
uu c(2)

x 1 2F(1)
u c(2)

xu 2 x(F(1)
u )2c(1)

xx ], x [ (1, y],

with conditions at x 5 1:
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TABLE III
Expressions for v and g

b 5 b0 , b0« g2 5 fb0k(k2 2 1) c2 5 0

b 5 b0«
2 g2 5 fb0k(k2 2 1) c2 5

f
4

k(k2 2 1)2

b # O(«3) g2 5 0 c2 5
f
4

k(k2 2 1)2

rc(3)
t 2 f(3)

t 2 (r 2 1)[F(1)(f(1)
u )2 1 F(1)

t F(2)
t ]

1 (r 1 1)F(1)
t F(1)

u f(1)
u 2 f(1)

u (rc(2)
u 1 f(2)

u )) 5 RHS(3)

f(3)
x 5 F(3)

t 1 F(1)F(2)
t 1 F(1)

t (F(2) 2 (F(1)
u )2) 1 f(1)

u (F(2)
u 2 F(1)F(1)

u ) 1 F(1)
u f(2)

u

c(3)
x 5 F(3)

t 1 F(1)F(2)
t 1 F(1)

t (F(2) 2 (F(1)
u )2) 1 c(1)

u (F(2)
u 2 F(1)F(1)

u ) 1 F(1)
u c(2)

u .

A.2. The Solution to the Problem

We present the solution of the problems stated in the previous section. Only the
solutions for F(i) are presented since they are the ultimate objective.

THE O(«) PROBLEM. The solution to the O(«) problem is

F(1)(u, t) 5 A(t) cos(ku),

where A(t) is the solution to a problem of the form

Ä(t) 1 g2A(t) 1 c2A3(t) 5 0, A(0) 5 1, Ȧ(0) 5 0,

where g and c depend on the size of the resting length 2f(1 2 b) as indicated in
Table III.

THE O(«2) PROBLEM. The solution to the O(«2) problem is

F(2)(u, t) 5 2AfA2(t) 1 B(t) cos(2ku) 1 C(t) cos (ku),

where B(t) satisfies the following equation with homogeneous initial
conditions

B̈(t) 1
2(4k2 2 1)

(k2 2 1)
[g2 1 c2A2(t)]B(t)

5 2
1
4

(2g2 1 c2) 1
A2(t)

4(k2 2 1)
[2g2(7k2 2 4) 1 c2(13k2 2 7)A2(t)]

and C(t) satisfies an equation of the form

C̈(t) 1 g2C(t) 1 c2C3(t) 5 H1(A(t)).
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A multiple scales analysis [15] may be needed to eliminate any possible secular
terms in the solution of the last equation with homogeneous initial conditions. This
is accomplished by defining a new time scale t, such that t 5 t(1 1 g1« 1 g2«

2)
and deriving all equations in terms of t. The equation for C gets augmented by a
term containing g1 , which is chosen to eliminate secular terms. This procedure
introduces an O(«) correction to the frequency of A(t).

THE O(«3) PROBLEM. In general, the solution to the O(«3) problem for a single-
mode initial perturbation is of the form

F(3)(u, t) 5 Y(t) 1 U(t) cos(ku) 1 V(t) cos(2ku) 1 W(t) cos(3ku),

where the equation for U(t) has the form

Ü(t) 1 [g2 1 3c2A2(t)]U(t) 5 H2(A(t), B(t)).

The multiple scales analysis would introduce an additional term into the equation
for U. This term eliminates secularities in this equation with the appropriate choice
of the parameter g2 in the definition of t. This introduces an O(«2) correction
to the frequency of A(t). Details of the multiple scales analysis can be found
in [15].
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